




$\widehat{\mathbf{AUB}}$ Alarming Reports From the Arab World
 Ambient air quality data shows a trend of increasing Criteria Air Pollutants (CAPs) emission levels over the Arabian Peninsula.
• Rapid urbanization and economic growth led air pollution in the Arab world has climbed to alarming levels in recent years (<i>Farahat</i> , 2016).
• Emissions increased over the past three decades in the MENA by up to 5-fold due to growth in the energy , and transportation sectors (<i>Abbas et al. 2018</i>)
 According to the WHO, air quality indicators in the Arab countries often exceed the WHO guideline values (Saade, 2019)
HR Dhaini CFED 2020

SOx and NOx Trends	R
 Increase over Arab urban centers 2005-2014 (Barkley et al., 2017). 	
SOx: + 60-120%	
NOx: + 3-12%	
 High levels over oil ports and refineries, and urban settlements in GCC countries. 	
 CAP emissions in the Arab World attributed to fossil- fuel addicted societies, high population density, and absence of ecofriendly public transportation systems. 	
HR Dhaini	2020

	WHO	Countries	Study Environment	Average Concentration of Pollutants	Latest Reference
Pollutant	Indoor AQGV	Bahrain	Homes	NO2 29.8 µg/m ³	(Madany & Danish, 1992)
Carbon Monoxide (CO)	 100 mg/m² - 15 min 35 mg/m² - 1 hour 	Egypt	Indoor smoking area	PM _{2.5} 478 μg/m ³	(Loffredo et al., 2016)
	 10 mg/m³ - 8 hours 7 mg/m³ - 24 hours 	KSA	Restaurants	PM ₁₀ 78.2 µg/m ³ PM _{2.5} 38.1 µg/m ³ CO 5.4 mg/m ³ CO2 2360 mg/m ³ VOCs 0.4 ppm NO2 608 µg/m	(El-Sharkawy & Javed, 2018)
Lead (Pb)	No limit available		Mosques Carpet	SO ₂ 0.2 mg/m ³ PAHs 4.09 μg/g	
Nitrogen Dioxide (NO ₂)	 200 µg/m² - 1 hour 40 µg/m² - 1 year 	Kuwait	Dust Elementary Schools	SO ₂ 7.7 μg/m ³ NO ₂ 29.8 μg/m ³	(Al-Hemoud et al., 2017)
Ozone (O ₂)	No limit available			H ₂ S 6.3 µg/m ³	
PM _{2.5}	No limit available	Oman	Residential Homes	O ₃ 159 μg/m ³ NO ₂ 20.3 μg/m ³ CO ₂ 1170 mg/m ³	(Abdul-Wahab, 2017)
PM ₅₀	No limit available			CO 321 µg/m ³ VOCs 689 ppm	
Sulfur Dioxide (SO ₂)	No limit available	Palestine	Schools	CO 0.8 ppm	(Elbayoumi et al., 2014)
		Qatar	University	CO ₂ 1938 mg/m ³ CO 1.2 mg/m ³ O ₃ 424 ug/m ³	(Benammar et al., 2018)
~		UAE	Homes	Ф <u>M_{2.5}</u> 206 µg/m ³ СО 5.5 mg/m ³	(Weitzman et al., 2017)

(TAUD	Elevat	00 V 00 00 00		
contrib premat	utor to m	ollution is the nortality in UAE , ns (AD), making at al., 2013)	with 651 at	tributable
• The ev		associated with PM	Mar in Beirut we	ere found
to betv		327 deaths, maki		
to betv	veen 257-3	327 deaths, making al., 2017)		
to betv	veen 257-3 th <i>(Dhaini e</i> i	327 deaths, makin t al., 2017)	ng between 7.8	
to betv	veen 257-3 th (Dhaini en Country	327 deaths, making al., 2017)	Attributable Pollutant(s)	
to betv	veen 257-3 th (Dhaini et Country Egypt	227 deaths, making t al., 2017) Premature Mortality Int/d cetts/100,000 VLL Projections (2015-2025):	Attributable Pollutant(s)	

AUE		AP is Associate Cardiopulmon		لحامح	
• With increasing urbanization in recent years, the prevalence of asthma is generally increasing in the Arab world (<i>El Margoushy et al., 2013</i>)					
	+42 % I Country	n respiratory diseases in Type and/or Source of Air	Associated Outcomes	1	
	Algeria	Pollutant(s) CO	Asthma & Chronic obstructive pulmonary disease (COPD)		
	Bahrain Egypt	SO ₂ , CO NO ₂ , SO ₂ , H-S, Dust storms	Respiratory hospital admissions Asthma-related symptoms		
	Kuwait	PM2.5 NO2, SO2, H-S, Dust storms	Ischemic heart disease and stroke Asthma-related symptoms		
	Lebanon	PM ₁₀ PM _{2,5} busy road, local diesel generators, local power plant	Total respiratory admissions Hypertension, Cardiovascular diseases, Chronic bronchitis		
	Morocco	NO2, SO2, H2S, Dust storms	Asthma-related symptoms		
	Oman	NO ₂ , SO ₂ , H ₂ S, Dust storms Industrial park	Asthma-related symptoms Adverse respiratory conditions ER visits		
	Qatar	NO ₂ , SO ₂ , H ₂ S, CO, NO, O ₃ , SO ₂ , PM10, Dust storms	Ischemic heart disease & Asthma- related symptoms	1	
	Saudi Arabia	PAHs, PM10, PM25, Oil refiner	Prehypertension		
	Syria	Dust storms	Asthma-related symptoms		
	Tunis	Biomass	Cardiopulmonary diseases		
	UAE	Industrial plant, gas station, dumpsite, or construction	Asthma, wheezing, and dry cough		
HR Dhaini				(AFED) 2020	

(≩AUB Re	ports on Attribut In Certain Ar	able Cancer Risk ab Nations	
	erranean Region (n, including cancer	EMR) show a large (Cohen et al., 2017).	
cumulative car	cer risk attributable	ed that the average e to NMHCs exceeds 80-40 fold (Dhaini et al.,	
 Another Lebar 	nese study showe	ed that exposure to	
PM _{2.5} and PM	110 contributed to	13% of total lung	
cancer cases in	n 2018 (Charafeddine et	al., 2017)	
Country	Pollutant(s)	Excess Cancer Risk (x 10-6)	
KSA	Heavy metals of PM ₁₀	108	
	PAHs	8.3 (children): 7.4 (adults)	
Lebanon	NMHCs	30-40	
Egypt	PAHs	6.64	
HR Dhaini		(AFED) 2020	

 AP levels in the Arab world are showing increasing patterns especially in urban areas.
 Observed trends are mainly due to fossil fuel burning, road transport, industrial activities the oil and gas sector, all topped by sand storms and seaspray.
 Challenges facing Arab countries towards improved air quality include outdated regulations, lack of law enforcement, and absence of sustainable AQM networks.
 Data from the past 25-30 years, report an increase in cardiopulmonary diseases and cancer incidence.
However, large data gaps in Arab countries still exist that precludes an accurate assessment of the health impact H Dhaini (2020)

	AUB Recommendations
1.	Update the regulatory framework in order to reflect the best available technology (BAT).
2.	Enforce the Law in an efficient manner and penalize non- compliance.
3.	Sustain and maintain AQMS networks
4.	Establish and update nationwide emission inventories, and employ high resolution air quality modeling systems.
5.	Derive concentration-Response (C-R) functions for every country to relate accurately exposure to health risks.
6.	Develop priority lists for health risk assessment as the basis for future interventions and risk management.