الفصل 3 - كفاءة استعمال المياه في الأبنية

يقدم هذا الجزء أفكارًا مفيدة حول كفاءة استعمال المياه في ما يتعلق بمعظم أنواع الأبنية، بما في ذلك الأبنية السكنية بشكلًا يتجاوز الأمور المرتبطة في المدارس والمستشفيات ومراكز التسوق وأبنية المكاتب والمساجد والفنادق والمطاعم، والأبنية أماكن تؤدي فيها كميات كبيرة من المياه. يمكن أن تحقق فيها وفرات لا يستهلك بها، ومن المتوقع أيضاً أن يزداد استعمال المياه في الأبنية بسبب التوسع الحضري وارتفاع مستويات العيشة وتنامي قطاع الخدمات في الاقتصادات الوطنية.

تقنياً، قمت كفاءة المياه عالية قليلة أو أُكملت كلية في تصميم الأبنية وتشييلها. وآدى هذا مقرراً بإنتاج استخدام مجد، إلى جعل المياه تستعمل بطريقة غير كافية في الأبنية، وفي ضوء تنامي شح المياه، وزيادة تكاليف الاستهلاك التي تشير إلى ضرورة المياه والمؤثرات على الفوائد المرتبطة بالسياقية في المياه.

تشجيع أفراد تغييرات سلوكية في الأبنية المسكنة والتجارية، وفي المنازل السكنية تحسين نظام التدفئة والتربيدة اعتماداً في المياه المرة، العناية بالحدائق والدراسات والمراقبة بطريقة مقيدة بالطريقة.

كشف مفصل للاستعمالات المائية في الأبنية

كما هو مأثِّل في أوضاعاً السكنية، تستعمل المياه في الأبنية عموماً لتنظيف وتنظيف الحمام وصلاح المساحات الخضراء.
الأغراض الرئيسية لاستعمال المياه في الأبنية

- الراحة
- مشرات (دوشات) الاستحمام
- أحواض الغسيل
- الطباخ
- غسل الملابس
- نظم التدفئة والتهوية وتكيف الهواء
- العناية بالحدائق والمساحات الخضراء
- تنظيف الأسطح من أرض ودرجات ونوافذ

على الرغم من تطابق استهلاك المياه تقريباً مماثلاً، فإن تقدير البنية التحتية للمياه والكميات وأنماط الاستخدام يمكن أن يتم باستخبارات كبييرة اعتمادًا على العوامل الرئيسية في المجتمع. على سبيل المثال، فيما يتعلق بالاستخدام والمراحيض، هناك نهج خاص في أماكن السكن والمدارس والمنافذ والبنية التحتية، فإن استخدام التدفئة والتهوية وتكيف الهواء وري الحدائق والمساحات الخضراء يمكن أن تكون مستهدفة رئيسية للمياه في مراكز التسويق والبنية التحتية التجارية والمؤسسات الكبرى الأخرى.

الشكل 3.1: كشف مفصل للاستعمال العادي للمياه في مبنى سكني

تحسين كفاءة المياه منهجياً في الأبنية

لتحسين كفاءة المياه في الأبنية، يجب اعتماد طريقة منهجية، كما يبين في الفصل 1، لكن، كما ذكر أعلاه، يمكن أن تظهر الأمثلية اختلافات كبيرة في ميزات استخدام المياه في استخدامها لمياه، ولفكextern أبضاع خدمات مختلفة، يمكن ملاحظة اختلاف كبير بين البنية التحتية السكنية من جهة والأبنية التجارية والمؤسساتية من جهة أخرى، من حيث تعقيد نظام المياه وعمليات التجهيزات
الفصل 3: كفاءة استعمال المياه في الأبنية

والاعداد والتحليلوت، والقدرة التنظيمية لمالكها أو مستعملها أو مثلك فيها، نتيجة لذلك، يجب تعديل وتكيف استراتيجيات المراقبة وخيارات التحسين لتماشي مع هذه الاختلافات، وحاول هذا الدليل التعريف على هذه الاختلافات.

الاعداد والتخطيط

كما في الراقب الصناعي، تحتاج برامج كفاءة المياه في الأبنية إلى اعداد وتخطيط، بينما في ذلك أجزاء محس للمرافق وأداء الاستعمال وتقييم أهداف الأداء، وتحديد خيارات التوظيف، إبلاغ مستخدمي المبنى وإشرافهم، وتوظف الوارد. وفي المنازل أو الشقق ذات الأسرة الواحدة، يمكن تفعيل الخطوات بشكل غير مهني، مع إبقائها في العملية على حايل، و أيضا إلى استمارة البيانات الخاصة بالأبنية، التي تقدم كجزء من تحليلات مساعدة في الفصل 2، فإن قائمة المراجعة الأنية الخاصة بالأبنية قد تكون مفيدة أثناء مسح الوقائع الخاص بمبني معرضي أو تجاري.

قائمة مراجعة

التخطيط أسئلة أثناء مسح موقع مبنى معرضي أو تجاري

- ما هي كمية المياه المستهلكة في الوظائف المختلفة للمبنى؟
- ما هي الوظائف التي تعتبر مستهلكة رئيسية: نظام التدفئة والثخينة وتكيف الهواء، مرافق الراحة، الجلوس التقليدية، وسواها؟
- ما هي التكاليف المباشرة وغير المباشرة لاستعمال المياه في المبنى؟
- ما هو نوع أعمال الصيانة (مثل معاينة التسربات أو صيانة الأجهزة) المعنية حالياً?
- ما هو نظام إعادة استعمال المياه وإعادة تدويرها المستخدمة أو التي تم التفكير بها.

فهم ديناميات استعمال المياه

الأبنية السكنية غالباً ما تكون مزودة بهيكلية توسعية بسيطة، فيما عدى محدود من الخارج وأحماج استهلاك منخفضة نسبياً. في هذه الأوضاع، لا يكون القياس بمرافقة مفصل عملياً أو ضروريًا، وإن ويا لجعل استهلاك المياه في المبنى إضافي إلى كشف مفصل معدل استعمال المياه (الشكل 3.1) سيكون كافياً لتقييم فرض التوظيف في المياه.

في الأبنية التجارية والمؤسسة، يجب أن تصبح نشاطات المرافق أكثر تفصيلاً لتماسح مع ديناميات النظام المائي وعقوله، وكذلك حاجة إلى جهد أكثر دقة وشمولية لتكوين مستوى فهم أكثر فأكثر.
النقطة 3: كشف مفصل لاستعمال المياه في فندق خمس نجوم في هونغ كونغ

الجدول 3: أماكن إجراء تحسينات رئيسية محتملة في أنواع مختلفة من الأبنية

<table>
<thead>
<tr>
<th>نوع البناء</th>
<th>مراحيض</th>
<th>ممارسات الاستخدام (مواقع)</th>
<th>غسيل</th>
<th>مطابخ</th>
<th>مراحيض السباحة بالحدائق والشواطئ</th>
<th>مرافق الاستخدام</th>
<th>صالات اليوغا والسباحة</th>
<th>مراكز تسوق</th>
<th>مكاتب</th>
<th>مدارس</th>
<th>مستشفيات</th>
</tr>
</thead>
<tbody>
<tr>
<td>أبنية سكنية</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>فنادق</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مستشفيات</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مدارس</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مكاتب</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مراكز تسوق</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
الفصل 3 - كفاءة استعمال المياه في الأبنية

تحديد خيارات التحسين

يتبين استقصاء تدابير التحسين مع الانتباذ لاحترافي لم تكن تلك التي تُحظى بأكبر احتمالات التحسين من بين مجموعة أماكن ونشاطات، هذه ستكون وظيفة نوع المبنى الذي يجري الحديث عنه. الجدول 3.1 يقدم ملخصًا للأماكن الرئيسية في أنواع مختلفة من الأبنية، إضافة إلى تحليل الفاقده بالمقارنة مع الكلفة يتبني تقييم أثر الخصائص المحددة على نوعية الخدمة وقابلية التطبيق ومنها وتوفر الدعم.

تظهر الخبرة من بلدان أوروبية وشمال أفريقية أن مستعملي الأماكن السكنية هم غالباً في وضع أفضل لتغيير أنماط استعمال المياه، لكن قد لا تكون لديهم القدرة لإجراء مراقبة دقيقة أو لاستعمال التجهيزات أو المعدات اللازمة بأيضاً كفاءة، مما يحد من خياراتهم المختلفة الرأسية واستعمال تجهيزات مقتصدة.

ضمان الاستمرارية

من الفضائل الرئيسية لبرنامج منهجي يتعلق بكفاءة المياه الذي هو من أن عملية التحسين لن تكون بعد مجموعة الكاسب الأولي، لكن عوضاً عن ذلك تصبح جزءاً لا يتجزأ من الأعمال الروتينية العادية. وكد أن لدي هذا يستلزم مراقبة مستمرة لأنماط استعمال المياه في أماكن رئيسية واتخاذ الإجراءات التشخيصية للتعامل مع القدرة أو الوفاء بأهداف محددة، وهذا يشمل أيضاً البحوث المستمرة على طرق جديدة يمكن أن تخفف استهلاك المياه في المبنى والعمل سهلاً على تبني الطرق التي يثبت أنها مجدية.

تدابير شائعة تتعلق بكفاءة المياه في الأبنية

هناك تدابير متعددة يمكن أن تحسن كفاءة استعمال المياه في الأبنية، ويمكن تحقيق التحسينات من خلال الجمع بين تغييرات سلوكية وأعمال تكنولوجية، في ما يأتي وصف لبعض التدابير الشائعة:

فرض رسوم على أساس الاستعمال

إحدى المشاكل الشائعة التي تُعِيّن تخفيضات كفاءة المياه في الأبنية ترتبط بنظام التعرفلات، ففي مناطق كبيرة من العالم ما زالت شرائح كبيرة من مستعمل المياه سواء أكثروا أو قلت أو شاغلي شقق في أبنية سكنية أو مستأجرين في مركزي تجاري لا تفرض عليها رسوم للمياه وفق أسس التشريعي الفعلي، وبدلاً من ذلك تبني تعرفتها المادية على أساس كفالة ثابتة، تدرج أحياناً كجزء من بناء أجراء شهري محدد.

هذه الممارسة هي عبارة رئيسيّة للكفاءة لأنها تلزم حافظ تخفيض استهلاك المياه، لذلك تتطلب احتفاظ الخلاطات الرئيسية المتعلقة بكفاءة المياه في الأبنية تركيب عادات مساعدة للمسطحين المتغيرة واعتداد نظام لاحتضان الرسوم على أساس الاستهلاك الفعلي، أما حالات توفيرات في المكالمات فلا يمكن تحقيقه إلا بجعل مستعملي المياه مدركين لعاداتهم الاستهلاكية وربط فوائدهم المالية بمعدلات الاستهلاك الفعلي.
اكتشاف التسربات

التسربات من المراحيض.

للمراحيض، يكون التسرب عاديًا من الفم على مستوى المستوى العادي. والتشخيص يعتمد على الإحساس بالتسرب من مصليات المراحيض. وبدون تدفق، يمكن التسرب من الشفط والبلوحة بشكل عام.

الحذف عن السكين، وحقول التسربات، يجب تحديد مكان التسرب وفقًا، في ما يتأثر من الأماكن أو التجهيزات السرية الشائعة التي يجدها نشاطًا بسيطًاً وتصحيحها.

الحذف عن السكين (دوشات) الاستخدام التي يقطر منها الماء.

الحذف عن السكين (دوشات) الاستخدام التي يقطر منها الماء يمكن أن تحدث بين 300 و 800 لتر في كل سنة. هذه هي كافية لـ 30 إلى 100 ماء مشروب، ولكن الأحماض السكين الإسبانوية تتطلب غلابًاً، ما نسبًا من الحذف عن السكين (دوشات) الاستخدام التي يقطر منها الماء. ويمكن استخدام حلقات أحكام السكين المضادة بسهولة وكم مونيوم، ما يوفر ألف لترات الماء.

نصائح

طريقة سريعة لأكتشاف تسرب المياه

للتأكد مما إذا كان منزلك خاليًاً من التسرب، أقرأ عداد المياه قبل وبعد فترة ساعتين منذ الوقت عن استعمال المياه. إذا كانت قراءة العداد غير مماثلة تمامًا، فهذا يشير إلى وجود تسربات.

التسرب من خزان دفق الماء في المراحيض

إذا كشف الخلاصة في غير موضعها أو مكسورة، فهذا يجعل الماء تدفقه باستمرار من بالوعة المرحاض. إجراء معالجة سريعة للاطالة القابضة للتأكد من أن الخلاصة مرتاحة تمامًا مع نقطة دفق الماء وأن ليست هناك شيئًاً.
الفصل 3 - كفاءة استعمال المياه في الأبنية

عوائق تمنع حركتها يمكن أن يؤدي إلى علاج سريع للمشكلة. وإذا كانت القيادة أو حلقة احكل السدود متضررة فتحتاج إلى استبدال.

يحدث فجأ-unital المستمر عندما لا يكون مستوى الارتفاع منخفضًا بشكل مناسب، أو عندما يكون هناك عائق يحول دون حركة علاج الوعاء، ومن خلال ضبط مستوى الارتفاع بشكل صحيح والتلاطم من أن علاج الوعاء يتحرك بحرية، يمكن تجنب الدقائ زائد.

صهاريج التخزين

في الأبنية التجارية والصناعية، المياه المزودة من الخط الرئيسي تخزين غالبًا في صهاريج (خزانات) قبل استعمالها. وقد يتذكر الاستقرار الإنشائي لصهاريج التخزين مع الوقت نتيجة أسباب مخفضة تؤدي إلى تسربات، وهذا يمكن إكتشافه من خلال مراقبة مستوى المياه في الصهريج خلال فترة لا يتم فيها استخراج المياه منه، ويشير انخفاض في مستوى المياه إلى وجود تسرب.

أبراج التبريد

الدنق الزائد من أحواض أبراج التبريد، كما هو مبين في الفصل 2، يمكن أيضًا أن يعتبر شكلًا من التسرب في الأبنية المنسوجة والتجارية. وقد يؤدي إلى هدر كبير، التدابير التي تم بحثها لتفتيح أيضًا على الأبنية.

الأنايبيب والوصلات والصمامات

الأنايبيب والوصلات والصمامات القديمة في الوعاء تفاقمان إذًا، قد يكون اكتشاف هذه أكثر صعوبة، خصوصًا إذا وجدت المياه للتسرب طريقها إلى فناء تصريف المياه البنطسية، ويمكن تبليين التسرب في نظام الأنايبيب إذا استمر بعد اصلاح جميع نقاط التسرب المرئية.

وفي هذه الحالات، قد يكون الحصول على مساعدة من مهني ضرورياً.

المراحيض والمباولا

في كثير من الأبنية، المراحيض مسؤولة عن ثلث استعمال المياه، ما يجعلها جزءًا جزءًا في تحصينات كفاءة المياه. وهذه يمكن تحقيفها من خلال تغييرات سلوكية أو تجهيزات مقتضبة خفيفة وكلاً من هذه الطرق تم قسم عددًا من هذه الدراسات، ومن المهم أن يتم فحص فترة استمرار النقاط بتأن عند النظر إلى خيارات الاستبدال.

تغير السلوك

التغيير السلوكى باتجاه تجنب استعمال خزان دفق المرحاض على نحو غير ضروري بشكل نمطية بداية. معقوله تغيير استخدام المياه في المرحاض، يجب تشجيع المستعملين على عدم استعمال المرحاض معقماء إمام ومنظم الخفيف، على سبيل المثال: ماء البارد، أو الحمامات أو الحمامات، وفي النهاية الخاصة، يمكن تنفيذ هذه التغييرات بسهولة نسبة، وفي الأبنية المؤسسة واللاسلبية، من جهة أخرى، الزيد من التدريب النهيي إضافًا إلى استعمال لاقط تحتفي قد يكون ضرورياً لتحقيق تغيير في سلوك المستعمل.
دليل كفاءة المياه

أجسام تقليل حجم المياه

إذا كان المرحاض من طراز قديم، هناك تغيير بسيط وفعال لخفض ماء في الخزان (السيفون) هو وضع جسم إزالة داخل خزان المرحاض. هذه الأجزاء التي تُستقر داخل الخزان تحت بشكل دائم حجمًا معقولًا من دون التعارض مع الآليات التشغيلية لنظام دفق الماء، والقوارير البلاستيكية الملوثة بالماء والتي توضع بجانب داخل الخزان يمكن أن تُغيِّر هذا العرض. هناك أيضًا منتجات تجارية يمكن استخدامها كأجسام تقليل حجم الماء في الخزان. وهناك احتمال آخر هو استخدام ما يسمى سدود المرحاض. وهذه حواجب توضع داخل الخزان، فتتحدث أسسًا جافة وبذلك يتم تخفيض كمية الماء المستعملة في كل عملية دفق.

هذه الأجهزة يمكن أن توفر ما بين 7 و8 ليترات من الماء في كل عملية دفق.

نظام الدفق المنخفض الحجم أو المزودجة النسق

عندما تستخدم نظام الدفق التقليدي أكثر من 11 ليترًا من الماء في كل عملية دفق، يمكن لأنظمة الدفق المنخفض الحجم أو المزودجة النسق أن تخفض هذه الكمية إلى 4.5 ليتر في كل عملية دفق كاملة و3 ليترات في كل عملية دفق عامة. هذا التحول قد يعني توفير آلاف ليترات المياه سنوياً، لكن هذه الأنظمة تحتاج أولاً إلى استبدال ليس فقط الخزان والبلاط الدفق، لكن أيضًا الواجهة المرحاض. لذلك، يجب أن تكون في الاعتبار عند استبدال الأنواع القديمة أو تركيب مراحيض جديدة، وتجدر الإشارة أيضًا إلى أن المرحاض المنخفض الدفق معرض لأكثر للاستيجار وقد تحتاج إلى استبدال بعض أنواع دروب المرحاض.

المراحيض الخوالية

يمكن وصل المرحاض بمسؤول للتغذية الهوائي لتخزين الماء، وتعمل هذه النظام بمساعدة مخبأة تُنحى فراغًا للمساعدة في دفع محتويات المرحاض بعملية كمية ضئيلة من الماء. ويساعد هذه النظام يمكن تخفيض استهلاك المياه بمقدار 0.6 ليتر في كل عملية دفق.

المراحيض التي تحوَّل القاذورات إلى سماد

هذه المرحاض التي تناسب المناطق الريفية تستفيد استخدام الماء ولا تحدث قانونيات سوداء. وإذا تمت
الفصل 3 - كفاءة استخدام المياه في الأبنية

دارتها بالشكل المناسب، فهي قد تنتج أيضًا دبابةً معقماً خاليًا من الروائح الكريهة. لكن هذه الوحدات تحتاج إلى مساحات أكبر وتنطوي معاملة مناسبة من المستعمرين.

المياض

كثيراً ما تستخدم المياض والشراب في الراقع العامة ونوعية تقليدية ينظم دفق دوري، وأيضاً تهدئ كميات كبيرة من المياه يجب الاستغاثة عن استعمالها، في ما يأتي أمثلة لدبابة أكثر كفاءة:

المياض المعزودة بعجلة استعمال عند الطابق

تعدل المياض التي تغلغلها أجهزة استعمال بالأشعة تحت الحمراء من خلال اكتشاف وجود مستعمل داخل مكان الكشف لفترة تزيد على حد زمني معين. عند مغادرة المستعمل مكان الكشف، يتم تشغيل نظام دفق المياض. هذه الوحدات لا تشتغل أكثر من 1 إلى 1.5 لتر من الماء في كل عملية دفق، أجهزة الاستشعار هذه تضرر لسأس أماء يؤدي إلى هدر الماء، لذلك من المهم تزويدها بتصاميم غليقة بدوية، ومن الضروري أيضاً مراقبة أجهزة الاستشعار وصيانةها بشكل مستمر للحفاظ على كفاءتها.

المياض الخلية من الماء

المياض الخلية من الماء مزودة بمسح تصاريصف يجمع البول ويفرغه في شبكة الصرف الصحي، من دون استعمال المياه، ولهذا المياض سطح داخلي لا يالف الماء وهو مزود أيضاً بعوام لتهيز غالبية تتحكم في الرياح وتشوه النباتات. هو توسيع تعلق من أنبوب المياه يستخدم كهربائي أو بيانات الرياح.

استعمال المياه الرومانية لدفق المراحض

يمكن استخدام مصادر مياه بديلة للوقاية من الرياح. فالمياه المستهلكة بنوع خاص في مرشات (دوشات) الاستحمام وأعمال الفسخ ونساط يلامس التي تندع مياه رمانية - يمكن استعمالها. لكن اعداء استعمال الماء الرومانية في الرياح يحول إلى تركيب أداة إضافية ومضخات وعدها تخزين وحة معالجة بسيطة، وقد يكون تزويدها للمياض والنقل العام فقط للابد الماء الرومانية مكلفة، ومن المهم أن يتم أثناء مرحلة التصميم إدخال نظام لتجميع المياه الرومانية ومعالجتها من أجل استعمالها.

مثال لبولاة خالية من المياه

THE AQUA (ذي أموا)

يمكن استخدام المياه بديلة لدق الرياح والمنزل، فلا يوجد مستهلك بنوع خاص في مرشات (دوشات) الاستحمام وأعمال الفسخ ونساط يلامس التي تندع مياه رمانية - يمكن استعمالها. لكن اعداء استعمال الماء الرومانية في الرياح يحول إلى تركيب أداة إضافية ومضخات وعدها تخزين وحة معالجة بسيطة، وقد يكون تزويدها للمياض والنقل العام فقط للابد الماء الرومانية مكلفة، ومن المهم أن يتم أثناء مرحلة التصميم إدخال نظام لتجميع المياه الرومانية ومعالجتها من أجل استعمالها.

نظام The Aqua يحول الماء الدافئ من مصرف الباردة، وتتمنى في توزيع الرياح وتحقيقها استعداداً لعملية التدفق الفي الرياح. والنظام مصمم بحيث يتم تركيبه بسهولة في الجهاز المقاوم ولا يتحت النقل من الميلان. وتنتقل مضخة كهربائية صغيرة الماء من خزان المياض الذي تبلغ سعة 21 لترًا إلى المياض، وتنبعث مياض في خزان الرياح ماء كاف لتنفيذ هذه المهمة. www.thetreehugger.com
دليل كفاءة المياه

أحواض ومرشات الاستحمام

أحواض ومرشات الاستحمام قد تكون مسؤولة عن 30% من الطاقة المستخدمة في المنازل. ومن خلال الجمع بين نظام سلكي وتقنية، يمكن تحقيق خفض يصل إلى 50 في المئة في استهلاك المياه في أحواض ومرشات الاستحمام، دون التضحية بمتطلبات النظافة والراحة.

إعطاء المرشات أفضلية على أحواض الاستحمام

إن إدخال تغييرات في أوضاع الاستعمال هو أيضاً من أفضل وسائل تحسين كفاءة المياه في أحواض ومرشات الاستحمام. وطبيعةً، عند استعمال أحواض الاستحمام لأغراض علاجية واسترخائية، قد يكون من الصعب إعادة الاستخدام. وإذا كان العرض هو النقطة الرئيسية فقط، فنجد تضييف المرشات على الأحواض، قدر المستخدم، لا يستعمل فقط كمية أقل من المياه، في شكل شعري أو في الواقع مقبول. لكن تعطي أيضًا نتائج صحية أفضل.

ضبط تدفق المياه والوقت أثناء استعمال المرشات

الكرات تحت ماء جار قد يكون مخبراً لكن يؤدي إلى استعمال مصرف للماء، ويضفي معدل مدة الاستحمام بقدر 20%، تستجيب أسرة مؤلفة من أربعة أشخاص أن تصرف كمية من المياه تصل إلى 60 مترًا مكعبًا في السنة، وتتوافق ساعات تذوب بسيطة وخصية الماء لتنبئي بالاستعمال إلى الوقت النقطي في الاستحمام، وفي حالة استعمال كميات صغيرة، يمكن تحقيق قدوات تنبيهها في المئة من خلال قطع المياه أثناء فترات شعور بالشامبو أو غسل الجسم.

رؤوس المرشات الكفوعة بالمياه

تعمل رؤوس المرشات الكفوؤدة من خلال مرحل دفق المياه بناءً على المرحلة، تتوفر هذه الوحدات تلامسًا مرضاً مع اليوه وتحقيق شفافية بالكمية المحيطة أقل بكثير، ومن ثم استماماً لمدة دقائق بواصلة رأس مرشة عادة يمكن أن يستهلك نحو 100 ليتر من المياه، فإن رأس مرشة كفوؤدة بالماء يستهلك ما معدله 35 ليترًا.

المرشات المزودة بنظام إغلاق أوتوماتيكية

المرشات المزودة بنظام إغلاق أوتوماتيكياً دفع المياه بعد استعمال كمية المياه الحدودية مسبقًا وتتمتع أن يشمل الاستعمل دفق المياه من جديد، هذه النظام يناسب جدًا الدارس والمرشات الرياضية على وجه الخصوص، لكن استعمالها يصبح شائعًا أيضًا في المرشات وبيادر الضفائد.

استعمال الخلاطات القابلة للتحديل بسهولة

يمكن هدر أكثر من 10 في المئة من إجمالي كمية المياه المستخدمة في درجة حرارة مريحة، واستعمال خلاطات ماء قابلة للتعديل بسهولة ومرشاد موزع للماء قد يقلل على درجة الحرارة، يمكن بلغ درجات حرارة الماء المتبغة بسهولة أكثر، ويئذى بهدير ماء أقل.

نصائح

إن تنفيذ تغييرات سلوكية قد يكون أسهل في المنازل السكنية بما في ذلك على سبيل المثال، حيث الاستخدام المفرد للماء في المرشات، أما في الأحواض الاستحمام يمكن اعتباره جزءًا من خدمة شاملة تقدم للمؤسسة، ونلاحظ تغييرات في زوايا فتحة، فإن رفع الوعي باستخدام نشرات وحملات إعلامية يمكن ربطها برسالة المسؤولية الاجتماعية القوية للعلامة التجارية للنقد.

مثال لرأس مرشحة مزودة بناءً على المرحلة

www.showerheadstor.com

60
الفصل 3 - كفاءة استعمال المياه في الأبنية

المياه المستعملة في مرشات وأحواض الاستحمام قد تكون مناسبة لاستعمالها بديلة، لذا يمكن جمعها ومعالجتها واعادة استعمالها (نُظر القسم الخاص باستعمال المياه الرمادية).

الحلفينيات وأحواض الفسيل

كفاءة المياه في هذه الأماكن يمكن أن تبدأ أيضاً ببعض التغييرات السلوكية، مثل عدم ترك المياه تجري مباشرة إلى الصرف أثناء تنظيف الأسنان أو غسل اليدين أو الحلاقة. غسل كلاً من ماء الحلاقة في وعاء يحوي ماء ساخناً بدلاً من ماء بارد، يمكن أن يحسن أيضاً كفاءة المياه، وفي ما يتعلق بالتركيبات التقنية، يجب مراقبة الخروج الآثاث:

الحلفينيات ومهاريتها الكفوفة بالمياه

يمكن لأجهزة تدفق ماء وغسل اليدين أن تخفض معدلات دفق الماء والترشيش بالزيادة أيضاً الكفوفة وكمية الترشيش. مثلاً، يمكن لهذه الحلفينيات أن تتوفر استعمال الماء بنسبة تصل إلى 80 في المئة أثناء غسل اليدين، والحلفينات الحديثة مزودة بمكونات وأدوات تفضلها من أجل التركيبات الجديدة، وتتوفر أيضاً مكونات تولد عناية يتم تركيبها بسهولة.

الحلفينات المزودة بأجهزة استشعار عند الطلب

الحلفينات التي تعمل عند التطلب تتمتع على أجهزة استشعار تعمل بالأشعة تحت الحمراء ل/documents/652705151.png

الحلفينات المزودة بنظام إغلاق أوتوماتيكي

الحلفينات الزودية بنظام إغلاق أوتوماتيكي تقطع دفق المياه بعد تصريف كمية محددة مسبقاً، ويمكن أن تستعمل هذه الوحدات مقاومة لياقة أو أجهزة استشعار تعمل بالأشعة تحت الحمراء لضبط دفق المياه. ويدرجه استعمال هذه الوحدات بالاقتصادى ومكونات مؤسفة للمياه وفي الحالات التي يكون فيها حدث الإغلاق غير متمنى بشكل نسبى مع احتياجات المستعملين، فإن هذه الوحدات قد تؤدى إلى استعمال مصرف للمياه.

نظام حلفينية ذات إغلاق أوتوماتيكي يعمل بالضغط على زر
دليل كفاءة المياه

الشكل 3.3: استهلاك وتوزيع المياه واستعمال أنواع مختلفة من الحنفية

غسل الملابس

عمليات غسل الملابس هي مجال آخر لاستعمال المياه بكميات كبيرة، خصوصاً في المنازل والمستشفيات والفنادق وخدمات غسل البيادر التجارية.

وبالنسبة إلى المنازل السكنية، غسالات الملابس هي أكثر كفاءة بالمقارنة مع غسل الملابس يدويًا. ونتيجة لذلك، يجب إعطاء الأولوية لاستخدام الغسالات، إضافة إلى ذلك، يجب اختيار غسالات التحميل الأمامي ذات المعايير العالمية الكفاءة عند تزويد الأبنية الجديدة بتجهيزات مثبتة من غسالة التحميل الأمامي. وقد يكون للطرق السهلة تأثير كبير على استعمال المياه في عمليات غسل الملابس، وعلى سبيل المثال، يجب تعديل دورات غسل الملابس بحيث تشمل غسالات الملابس بحمولات كاملاً بدلاً من الحمولات الجزئية.

الاستهلاك الكلي للماء في غسل الملابس لوضعية معينة يمكن أيضاً تعريفه بشكل كميات من خلال تنفيذ عملية الغسل عند الضرورة بدلاً من اعتماد جدول زمني محدد مسبقًا، هذا ينطبق بشكل خاص على الفنادق حيث يتم تقليدياً استعمال جميع المناشف والملاسل، وغالباً ي⁺عدد متزايد من الفنادق اليوم لنزلائها بأن يقرروا إذا كانوا يرغبون استعمال مناشفهم والملاسل أسرتهم، وبذلك تستطيع عن عمليات الغسل غير الضرورية.

ويمكن اقتصاد المياه الرمية الناتجة عن عمليات الغسل العالية أساسية وجعلها مناسبة لإعادة الاستعمال. ويمكن إعادة استعمالها لدقق الرحاب، ويمكن استعمالها أيضاً لذي الخافي، لذلك يجب النظر في خطط لاستثمار اقتصاد المياه الرمية الناتجة من عمليات غسل الملابس أثناء مرحلة تصميم الأبنية الجديدة.

 sourcem Water Efficiency Labelling and Standards, Australia.
الفصل 3 - كفاءة استعمال المياه في الأبنية

المطبخ

المطبخ في وضعيته المختلفة هو مجال آخر لاستعمال كميات كبيرة من المياه، خصوصاً في الأبنية التجارية والمؤسسية، مثل الفلنيد والمدارس والمطاعم ومراكز التسوق. من خلال الجمع بين التغييرات السلوكية والتقنية، يمكن تخفيف استعمال المياه في المطابخ بشكل كبير.

استبعاد استعمال المياه الجارية في تحضير الطعام

في المطابخ المنزلية والتجارية يجب غسل الخضار والفواكه قبل استعمالها في تحضير الطعام. وبدلًا من غسلها تحت ماء جارٍ، قد يكون استعمال وعاء ماء فعالًا بالقدر نفسه، وإضافة إلى ذلك، يمنع استعمال ماء جارٍ لإدارة الجليد. هذه الممارسة تهدد كميات كبيرة من الماء، وبدلًا من ذلك، يمكن إدارة الجليد بوضع أصناف الأطعمة الجاردة في ثلاجة أو مكان مكشوف في الطبع لمدة زمنية معقولة (حذار من طول الوقت تجنباً لفساد الأطعمة)، ويمكن أيضاً استعمال أفران الميكروويف لإدارة الجليد.

استعمال غسالة الصلحون

الصلحون والأواني المنزلية يجب غسلها عند الامكان باستخدام غسالات الصلحون لأنها أكثر كفاءة باستخدام الصلح من الغسل اليدوي، وبالتالي فإن الاستعمالات التجارية وال منزلية أيضاً يمكن إعطاء الأفضلية للغسالات التي لها كفاءة أعلى. وفي إعطاء الأفضلية للغسالة، يجب تشغيل غسالات الصلحون عندما تكون محملة بالكامل، بدلاً من الحمولات الجزءية. وджير بالذكر أن غسالات الصلحون المنزلية الحديثة التي تستخدم بخارًا على الضغط يمكن أن تكون تجاه عظيم من الأوساخ الموجودة على الصلحون التي لا تحتاج إلى شطف مسبق.

الشطف الأثري السابق للغسل اليدوي

عندما يكون الغسل اليدوي الخيار الوحيد، يجب إعطاء الأولوية لغسل الأطعمة الصلحون بواسطة ألياف، أي بمساعدة مذيل مستعمل أو فرشاة، على استعمال ماء جار، وعند الضرورة، يمكن نقع الصلحون في وعاء لتطهيره بقايا الطعام، ويجري أيضاً تأدية عملية غسل الشطف القلبيتين باستخدام دفعات من الماء الوضعي في أوعية بدلًا من ماء جار.
فوهة الرش التي تعمل بمقدام

في المطابخ التجارية، الشكل السابق للصواني شائع من أجل تخفيض استهلاك المياه والمواد الكيميائية في غسلات الصحن السريعة الدورات. وفي هذه النشاطات، استعمال فوهة عالية الضغط مزودة بمقدام يمسك باليد يمكن أن يؤدي إلى توفير مائية لا يتسبب بها.

استعمال الماء الساخن

الماء الساخن أفضل كثيراً في إزالة بقايا الطعام عن الصواني، ولذلك يوفر تنظيفاً مماثلاً أو أفضل بكميات تقل كثيراً عن الماء البارد. لكن تكاليف الطاقة اللازمة لتسخين الماء يجب أن تأخذ في الاعتبار.

ماكينات صنع الثلج

ماكينات صنع الثلج التي توجد عموماً في المطابخ والفنادق يمكن أن تستهلك كميات كبيرة من الماء. الماكينات التي تلعم بالهواء، والتي تحتاج فقط إلى نحو 1.9 لتر من الماء لكل كيلوغرام من الثلج، يجب تفضيلها على الماكينات التي تلعم بالثلاجة والتي قد تستهلك كمية أكبر من الماء تبلغ سبعة أضعاف.

تنظيف الأماكن

يجب تنظيف المطابخ التجارية تكراراً لأعراض صحية. ويمكن اتخاذ عدد من التدابير لتحفيض استهلاك الماء، وتقسيم الأماكن وفق احتياجات التنظيف، واستخدام التنظيف الآلي إلى حد ما، واستعمال نظام عالية الضغط ومنخفضة الحجم يمكن أن تساعد جميعاً في تخفيض استهلاك الماء في تنظيف الأماكن.
الفصل 3 - كفاءة استعمال المياه في الأبنية

الحدائق والمساحات الخضراء

استعمال المياه لري الحدائق والمساحات الخضراء قد يستهلك كميات كبيرة من المياه وعادة يوفر إمكانية جيدة لتحقيق مكسب تتعلق بالحفاظ، في ما يأتي ثلاث طرق رئيسية فعالة في تخفيف كمية المياه المستعملة لري الحدائق والمساحات الخضراء:

اختيار أنواع النباتات العالية

تحمل الأنواع النباتية أهم تباشير النجاح في تخفيف استهلاك المياه، وللأسف، فإن أنواعاً نباتية دخلة غير متوافقة في البيئة المحلية تستعمل عوالمها في الحدائق، وهي تحتاج إلى كميات زائدة من المياه وصيانة اضطرابية. وفي المناطق شبه القاحلة التي تمتاز بها البيئة بدلًا من الشرق الأوسط وشمال أفريقيا، يجب أن تكون الأنواع التي تحتل الجاف الخفيف الفضل، مثل النباتات التي تحتمل الجاف جزءًا أساسيًا من الحدائق والمساحات الخضراء الكوفة بالبلايا، وهي تتكيف مع بيئات شج البلايا ولذلك تحتاج إلى مدار ضئيل من الري التكميلي، وهي تحتاج أيضاً إلى صيانة أقل من مثيلاتها السرفة في استهلاك المياه.

مشروع الحدائق والمساحات الخضراء المقتضبة بالمياه في الأردن

المساحات الخضراء بدلًا من الاعتماد الكلي على السطوع الذي تطلبه النباتات.

• مشروع مركز دراسة البيئة البنية (CSBE) الخاص بالحدائق والمساحات الخضراء المقتضبة بالمياه يهدف بتطوير الساحات الخضراء ذات الناظر الجميلة التي تقتصر أيضاً في استهلاك المياه، وتحقيق هذه الأهداف من خلال تشكيلة من الوسائل التي تشمل استعمال نباتات مستوطنة تحتل الجاف وتشتهر من مياه الأمطار إلى أقصى الحدود، وتُدخل سطوح النبتة ذات الغطاء السميك (الكون من مواد مثل البول الصخري والحصى والطوب واللخsanة) في تصاميم

تحسين نظم الري

يمكن تنفيذ عملية الري بدءًا من خلال تركيب تعدادات مخصصة لهذا الغرض. وعند اختيار وضعية الري يجب إعطاء أولوية لنظم الري تحت سطوع الأرض على النظم الفوق سطح الأرض، ما يقلل خسائر المياه الناتجة من التبخير. وإضافة إلى ذلك، فإن جعل الري متزامناً مع تغييرات في محتوى رطوبة التربة هو أكثر كفاءة من الاعتماد على نماذج متكررة محددة مسبقًا، وبإمكان جهاز تحكم ارتشفاتي بالري، عند ارتفاع حرارة ماء، حسب الأصول، أن يعرض ثمنه من خلال تحالف استعمال المياه وكيفيتها والأيدي العاملة. وباستخدام جهاز بسيط لراقبة محتوى رطوبة التربة باستمرار، يمكن تحقيق فوائد كبيرة.

ويجب صيانة معدات الري حسب الأصول وبانتظام، بما في ذلك ادخال تعديلات على رؤوس المرشات وفوهات التنقيط عند الحاجة.
استخدام مياه الأمطار المجتمعة والمياه الرمادية

في الحدائق والمساحات الخضراء غالباً ما يكون مناسباً بشكل جيد لاستخدام مصادر بديلة للمياه، مثل المים الرمادية أو مياه الأمطار المجتمعة أو حتى المایا العالية التي يمكن الحصول عليها من مصايف الیاه البلدیة في بعض الحالات. الشكل 4.3 يظهیر نظاماً لتجميع مياة الأمطار.

الشکل ۴.۳: نظام فعال لتجمیم مياة الأمطار^2

التجمیئة والتبريد

في الأبنية التجارية والمؤسسات التي تحيى مساحات كبيرة، كثيراً ما تستعمل نظم التجمیئة والتلوث وتكيیف الهواء المركزیة. وهذه النظم مماثلة لحد بعيد لنظم التجمیئة والتبريد البيئیة في الفصل ۲ (کفاءة مياة في المرافق الصناعیة)، ويمكن أن تستفید من تدابیر التجمیئة ذاتها.

قائمة مراجعه

تدابیر کفاءة المياة في نظم التجمیئة والتلوث وتكيیف الهواء

- تعديل أحمال التجمیئة والتبريد وفق الطلب الفعلي
- استبدال نظام التوزیع المستمر بنظام إعادة التوزیع
- تخفیض النفاذ من خلال الراقیة الدقيقة للشوارع واستعمال مواد كیمیائیة مناسبة
- صیانة مؤکنات النظام بالشكل المناسب
- تخفیض خسائر الانحراف والتشرشش من أبیج التبرید
- تخفیض الفیض الزائد من خلال تعديل مستوی صمامات العوامات بالشكل المناسب
- خزانات برج التبرید
- النظر في استخدام مصادر مياة بديلة
لفصل 3 - كفاءة استعمال المياه في البنى التحتية

تدابير تتعلق بالتصميم المبكر

يجب إدخال كفاءة الطاقة مبكرًا في مرحلة تصميم إنشاء الأبنية، ويمكن تعزيز جدوى بعض التدابير المتعلقة بالكفاءة من خلال إعادة النظر في مقومات تصميم شبكة توزيع المياه وخزانات المياه ونظم دعم المياه الأخرى، في ما يأتي أمثلة لثلاثة نظم:

خذانات المياه

يتم إعادة توزيع الأبنية التجارية وال 홈لسيا بالجزء من خزانات مياه توزيع ووطنيين. فهي مصدر موثوق للمياه عندما ينقطع الامداد المنظم من شبكة توزيع المياه. ويمكن أيضاً استخدام الجوانب الخпозة لأعراض مكانية الحريق. ولأسباب تتعلق بالصيانة، يجب تصميم هذه الخزانات على مساحة معينة كما يجب إعادة تدريع محترفيها.

ولتوفر المياه، يجب تصميم خزان المياه حيث يتكون من خليتين متغطتين، تتسع كل منها 50 في المئة من مجمل حجم الخزان، ويوجد خزان مكون من مقصورتين. يمكن تزويج المياه من إحديمها في الأخرى أثناء أعمال الصيانة مما يحل دون توقف كامل محتوى الخزان من المياه. لذلك يجب أن تكون خليتين مصممتين على نحو ينتم من تدريعهما بشكل منفصل (لأغراض الغسيل والصيانة).

شبكات توزيع المياه

هناك طريقة أخرى قد تسفر عن مكاسب تتعلق بكفاءة المياه في الأبنية التجارية وال مؤسسية في تصميم شبكة توزيع المياه الداخلية بحيث تكون لها قطاعات مستقلة يتركز توزيع مياه مسارها الشبيه. في الخانة التالية أمثلة على قطاعات مياه مستقلة يمكن أن تكونها في الاعتبار بالنسبة إلى الأبنية التجارية أو جزء توزيع ككل على توزيع نظام رياضي يضيف الاستهلاك الحد للمياه في ذلك القطاع بعد توزيع نسيج الشبكة الأخرى.

تساعد الرقابة المستقلة للقطاعات في كشف لأمراض استعمال المياه في مختلف القطاعات وفي تحديد وعزل تسربات المياه المحتملة في البين.

البنى التحتية للاعادة استعمال المياه

كما ذكر سابقاً، يمكن جعل المياه الرومانية التي تنتمي استعمالات معينة في الأبنية. مثل مرونة الاستخدام وأحواض السباغيتي و غسالات المانية مناسبة للاستعمال في نظام الرحيت أو لمري الردات و السحابات الخضراء. وتشهير استعمال المياه الرومانية، ينبغي إدخال نظام تجميع المياه الرومانية ومعالجتها وتزويتها في مرحلة التصنيف البتة. وتشمل نظام تجميع شبكة تحضير منفصلة، ووحدة معالجة سطحية في الموقع. أي استعمال مضافي، إملأ أو تقني وخصية وشريكة توزيع خاصة.

وكم تحدث أثناء أثناء تجميع مياه الأمطار، هناك حاجة إلى بنة تحلية لتجميع الماء والتخزين وتوزيع.
تجميع مياه الأمطار

يمكن أن تصل مياه الأمطار التي تجميع أساساً من السطح أو الأمواك المرصوفة النانسية الأخرى- مثل مواقف السيارات - إلى كميات لا يستهان بها ويمكن استعمالها لأغراض مختلفة، مثل:

- الحدائق والمساحات الخضراء
- دفق الراحيض
- غسل الملابس
- التنظيف العام
- التبريد والتدفئة
- الاستعمال المتعلق بالنظافة الصحية والشرب

ويحتوي نظام لجميع مياه الأمطار وعادة استعمالها على الكونات الآتية:

أ) مكان التجميع: هناك حاجة إلى سطح لا تنطفئ منه المياه، مثل سطح منزل أو موقف سيارات، لاحتجز مياه الأمطار.

ب) نظام النقل: يجب أن تكون الأنابيب والمرافق النانسية في مكانها لتحويل مياه الأمطار المتجمعة أولًا إلى وحدات العالجة ثم إلى الخزان.

ter 1شيح والمعالجة: يجب عادة معايير مياه الأمطار المتجمعة، ويعتمد مقدار العالجة الطالبية على خصائص مكان التجميع والاستعمال المقصود للمياه المتجمعة، فلذا، تجميع مياه الأمطار من السطح يحتوي عادة على كميات من الملوحة تقل عن تلك الموجودة في المياه التي تجميع من الأمواك المرصوفة أو مواقف السيارات، ولذلك، تحتاج إلى معالجة أقل، ومعنماً، ينفق فجأة الجزء الأول من مياه الأمطار الجارية، ويبقى إلى أن يكون مناسبًا للشنابات، ثم تمر المياه عبر وحدة ترشيح لاحتجز الود العضوية والشنابات الأخرى، وفي حين أن ترشيح ختامي، مثل ذلك الذي يمكن تحقيقه بواسطة مرشح شبهي أو مرشح نفلي بسيط، قد يكون كافياً لتجميع الود النظيفة نسبة، فإن ترشيح أدق، مثل الترشيح بالانتشار الغشائي، قد يكون لازماً للشناابات أخرى، خصوصاً إذا كان الاستعمال المقصود للمياه يتطلب نوعية أعلى.

التخزين: توضح مياه الرشة بعد ذلك في خزان، وتحديد أبعاد الخزان أمر مهم، ويطلب تقديرًا لكمية الود التي يمكن تجميعها، ويمكن حساب كمية مياه الأمطار التي قد يتم تجميعها في موقع محدد باستخدام المعادلة الآتية:

\[V_{\text{rain}} = A \times P \times 0.8 \]

حيث:
- حجم مياه الأمطار (م³/السنة)
- مساحة التجميع (م²)
- معدل المتساقطات السنوية (بالمليمترات)

68

دليل كفاءة المياه
الفصل 3 - كفاءة استعمال المياه في الأبنية

يجب تزويد الخزانات بنظام لمنع التدفق، وأضافة إلى ذلك، إذا كان يجب ملء الخزان حتى الذروة بعيوب من الخط الرئيسي، ينبغي تزويده بجهاز لمنع الدفق الخلفي.

نظام الخلل: قد تكون هناك حاجة إلى مضخات وصمامات وأنابيب لتحويل مياه الأمطار إلى مكان الاستعمال، وبناء على تصميم النظام، إذا كانت هناك حاجة إلى مضاخة لتحويل المياه إلى مكان الاستعمال، فيمكن أن توضع داخل الخزان، وإذا كان الطلب أن تستوفي مياه الأمطار متطلبات صحية أعلى أو أن تستعمل للشرب، فقد تكون هناك حاجة إلى إدخال وحدات معالجة إضافية، مثل مرشحات الكربون المشب وتطهير الإشعة فوق البنفسجية، في نظام التوزيع.

بيتن الشكل 5.3: تصميمًا بديلاً لنظام بسيط لجميع مياه الأمطار.

العناية الطولية: ينبغي تنظيف خزانات نظام تجميع مياه الأمطار على فترات متكررة. يعتمد التكرار على تصميم الخزان ومستوى التشريحة.

في المتابعة الدائمة خاصة، يمكن أن تتحول الخزانات بسبب الخنازير أو أخطار القمامة والكائنات الحية الأخرى، ولنحو حدوث ذلك، ينبغي إقفل جميع الفتحات التي لا تستعمل تركراً وأحكام سما بالشكل المناسب، أما الفتحات التي تستعمل عادة، مثل أشبة الدخول وصرف الفاضد، فيجب تغطيتها بشك.

الشكل 3.8: نظام تجميع مياه الأمطار للأبنية

Sydney Water g
CSBE, Water Conserving Landscapes Manual
Home Water Purification Systems (http://www.cleanairpurewater.com)